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We study the Schrödinger equation which comes from the paraxial approximation of the
Helmholtz equation in the case where the direction of propagation is tilted with respect
to the boundary of the domain. In a first part, a mathematical analysis is made which leads
to an analytical formula of the solution in the simple case where the refraction index and
the absorption coefficients are constant. Afterwards, we propose a numerical method for
solving the initial problem which uses the previous analytical expression. Numerical
results are presented. We also sketch an extension to a time dependent model which is rel-
evant for laser–plasma interaction.
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1. Introduction

For the simulation of the propagation of a monochromatic laser beam in a medium where the local refractive index is
nearby a constant, it is classical to use the paraxial approximation of the Maxwell equations. This approximation takes into
account diffraction and refraction phenomena; it is intensively used for decades in optics and in a lot of models related to
laser–plasma interaction in Inertial Confinement Fusion experiments (cf. [4,10,21,14] and the bibliography of these refer-
ences). Let us first recall briefly the outlines of this approximation. Denote by 2p� the laser wave length, it is in the order
of 1 lm and is very small compared to the characteristic length of the simulation domain (which is in the order of some
mm for the inertial confinement plasmas). According to laws of optics, the laser electromagnetic field may be modeled by
the solution w of the following Helmholtz equation (which comes from the time envelope of the full Maxwell equations):
�2Dwþ wþ 2i�mtw ¼ 0; ð1Þ
where we have denoted
mtðxÞ ¼ mðxÞ þ ilðxÞ;
so mt is a complex function, its real part m corresponds to a conveniently scaled absorption coefficient and its imaginary part l
to the variation of the refractive index (1� 2�l is equal to the square of the refractive index n up to a multiplicative
constant).
. All rights reserved.
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We assume also that the light propagates according a fixed direction defined by the unit vector k. After making the clas-
sical WKB expansion
w ¼ u exp
ik � x
�

� �
; ð2Þ
Eq. (1) may read as 2imtuþ 2ik � $uþ �D?u ¼ �ðk � $Þ2u, where D? is the Laplace operator with respect to the transverse
variable
D?� ¼ r � ½ð1� k� kÞr��; 1 being the unit diagonal tensor:
Assuming that u is slowly varying with respect to the longitudinal variable, we can neglect the right hand side of the previous
equation. Therefore u satisfies the classical paraxial equation for wave propagation
ik � ruþ �
2

D?uþ imtu ¼ 0; with mt ¼ mþ il: ð3Þ
For this kind of model, it is usual to handle a simulation box which is a parallelepiped and the laser beam is assumed to enter
into the simulation box on a plane boundary denoted by C0. Let us denote n the outward normal vector to the incoming
boundary C0. Classically, the crucial assumption is that the laser beam enters into the simulation domain with a very small
incidence angle, that is to say the vector k is almost equal to �n. Then, in such a framework (3) is a classical linear Schrö-
dinger equation, the operator k � r plays the part of time derivative and the boundary condition on C0 which reads u ¼ uin

(where uin is a given function defined on C0) plays the part of the initial condition. On the other hand, artificial absorbing
boundary conditions are to be imposed on the faces of the simulation domain parallel to the vector k (see for example
[1,7,15]). The numerical methods are always implemented on an orthogonal mesh and are based on a splitting with respect
to the main spatial variable between the diffraction part �

2 D?u
� �

and refraction part ðimtuÞ, see [4,3,10] for example.
We address in this paper a different case where the incidence angle of k with �n is large; these simulations are called

tilted frame simulations. This kind of simulations is of particular interest if one has to deal with the crossing between
two beams (in the high energy laser devices, a large number of beams are focused on the target, therefore beam crossing
may be taken into account, see [8] for a survey on related laser propagation problems); an example of such simulations
in a very simplified case may be found on Fig. 13. This tilted frame model has been considered some years ago by physicists
for dealing with beam crossing problems (see [20]).

Simulations in a tilted frame are also necessary for dealing with special situations. For instance for the propagation of a
beam in a domain where the profile of the refractive index n is such that n2ðxÞ ¼ n2

0ð1� elðxÞÞ (with n0 constant smaller than
1) in a first subdomain D and n2ðxÞ ¼ N ðx � n�Þ þ dNðxÞ (where N 2 ½0;n0� depends on a one-dimension variable x � n� and
dN is small with respect to 1) in a second juxtaposed subdomain DH , one must handle the paraxial Eq. (3) in subdomain D
and the Helmholtz Eq. (1) in subdomain DH . For the numerical solution of (1), one has to solve a huge linear system (corre-
sponding to the discretization of the equation on a very fine grid) and for handling this huge linear system, it is necessary
that the variable x � n� corresponds to one of the main direction of DH . Therefore the full simulation on ðD [ DHÞ has to be
performed in a box such that the corresponding normal vector n must be parallel to n� (see [6] for details for this kind of
simulations).

In the case of a large incidence angle, the crude expansion w ¼ U expð�in � x=�Þ leads to difficulties and to overcome
these difficulties, it has been proposed in [13] to replace the transverse Laplacian by a pseudodifferential operator, but with
this approximation, U is not slowly varying with respect to the spatial coordinates therefore it is necessary to handle very
fine mesh – at least 10 cells per wave length- to get accurate results. One can also refer to the works in the spirit of [16]
in the acoustic framework but the application to the optics problems seems to be difficult.

Here we consider the expansion w ¼ u expðik � x=�Þ, with u slowly varying with respect to k � x, so we have to deal with
the tilted frame Laplace operator D? and one has to supplement the Eq. (3) with a right incoming boundary condition on C0.
For the statement of this boundary condition, one assumes that a fixed plane wave win ¼ uin expðik � x=�Þ enters into the do-
main where uin is a given function of the variable which is orthogonal to k. Now, for the Helmholtz problem, the boundary
condition is classical and may be written as ð�n � r þ ik � nÞðw� uineik�x=�Þ ¼ 0, then using (2) and an asymptotic expansion
with respect to the small parameter �, the corresponding boundary condition for Eq. (3) may read in a natural way as
ð�n � r? þ 2ik � nÞðu� uinÞ ¼ 0; ð4Þ
where r? ¼ r� kðk � rÞ denotes the gradient orthogonal to k. See [9] for a justification of the paraxial approximation in
the special case we are dealing with.

If one sets x ¼ ðx; y; zÞ in 3D and x ¼ ðx; yÞ in 2D, the entrance boundary C0 corresponds in this paper to x ¼ 0. In the sequel
we consider a 2D problem but most of the ideas of this work may be extended to the 3D case.

Eq. (3) may be recast as
iðkxoxuþ kyoyuÞ þ �
2

D?uþ imtu ¼ 0;
and up to our knowledge, the numerical solution of this kind of equations is novel; the main difficulty is to handle correctly
the tilted Laplace operator D?u. For the mathematical analysis of the problem, one key result is the following (cf. proposition
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2). On the half-space fðx; yÞ s:t: x P 0g, if the coefficient mt is a positive real constant, after taking the Fourier transform with
respect to the y variable, the problem (3) and (4) is equivalent to an ordinary differential equation with respect to the x var-
iable and it is possible to exhibit an analytical solution. This analytical formula is the convenient tool for numerical treatment
of the diffraction part of (3) in the general case where mt is not constant.

The paper is organized as follows. In Section 2, after setting classical energy estimates for problem (3) supplemented by
(4), we prove the above mentioned theoretical result.

Section 3 is devoted to the description of the numerical scheme for solving problem (3) and (4); it is based on a splitting
method with respect to the spatial variable x using fast Fourier transforms on a first step (for the diffraction part) and a stan-
dard finite difference method on a second step (for the advection and refraction part).

In Section 4, we give the numerical results on the initial problem and for a model where the coefficient l in (3) is
replaced by f ðjujÞ corresponding to the autofocusing which occurs in the laser–plasma interaction (see [19] for instance).
From a physical point of view, this term represents a variation of the plasma electron density caused by the pondero-
motrice force of the laser. In the last section we consider a more general model where the stationary problem (3) is
replaced by a time-dependent one which is coupled to a hydrodynamic system for a suitable modeling of the plasma
behavior.

2. Analysis of the tilted paraxial equation

For reasons which will appear in the sequel, we assume in this section that
infxmðxÞ > 0: ð5Þ
We first study the problem where the simulation domain is the half-space:

D ¼ fx ¼ ðx; yÞ s:t: x > 0g; C0 ¼ fx ¼ ð0; yÞg:
Assuming that l is a bounded function, we consider the following problem
ik � $uþ �
2

D?u� luþ imu ¼ 0 on D; ð6Þ

ði�n � r? � 2k � nÞðu� uinÞ ¼ 0 on C0: ð7Þ
2.1. Energy estimate

Let us first state the following classical estimate.

Proposition 1. Let ði�n � r? � 2k � nÞuin 2 L2ðRÞ. If u 2 H1ðDÞ is a solution to problem (6) and (7), it is unique. Moreover, we
have the following stability estimate, with a constant C independent of m;l:
Z Z

D
2mjuj2 þ

Z
C0

jk � njjuj2dy 6 C
Z

C0

jði�n � r? � 2k � nÞuinj2dy:
Proof. Let us denote D ¼ n � r?. Doing the scalar product of Eq. (3) with u and taking its imaginary part, we get
Z
C0

juj2k � nþ �
2i
ð�uDu� uD�uÞ

� �
dyþ

Z Z
D

2mjuj2dx ¼ 0:
According to the boundary condition (7) we check that

�
2i
ð�uDu� uD�uÞ ¼ �2k � njuj2 þ Imð�uð�Dþ 2ik � nÞuinÞ:
Then we get
Z Z
D

2mjuj2dxþ
Z

C0

jk � njjuj2dy ¼ �Im
Z

C0

�uð�Dþ 2ik � nÞuindy
� �

: ð8Þ
According to (8), if ði�D� 2k � nÞuin ¼ 0, we see that
R R
D 2mjuj2dx ¼ 0, so u ¼ 0. Therefore we get the uniqueness of the solu-

tion of problem (6) and (7).
To obtain the stability inequality, we first see that Eq. (8) implies
jk � nj
Z

C0

juj2 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

C0

juj2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

C0

jð�Dþ 2ik � nÞuinj2
s

:

Using this estimate, Eq. (8) leads to
Z Z
D

2mjuj2dxþ
Z

C0

jk � njjuj2 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

C0

juj2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

C0

jð�Dþ 2ik � nÞuinj2
s

6
1
jk � nj

Z
C0

jð�Dþ 2ik � nÞuinj2: �



864 M. Doumic et al. / Journal of Computational Physics 228 (2009) 861–880
By the same technique we get also the following estimate
Z Z
D

2mjuj2 þ
Z

C0

jk � nj
2

ði�Dþ 2k � nÞu
2jk � nj

����
����
2

¼
Z

C0

jk � nj juj2 þ 1
2
ði�D� 2k � nÞuin

2jk � nj

����
����
2

 !
;

which says that the absorbing energy plus the outgoing energy is equal to the incoming energy.

2.2. Analytical form of the solution in the case mt constant

We now assume that l ¼ 0 and m is constant for getting an analytical form of the solution to problem (3) and (4). We
denote k ¼ ðkx; kyÞ and g the function defined by
2kxg ¼ i�kyðkxoy � kyoxÞuin þ 2kxuin: ð9Þ
The problem may read as
iðkxox þ kyoyÞuþ
�
2

k2
xo

2
yy � 2kxkyo

2
xy þ k2

yo
2
xx

� 	
uþ imu ¼ 0; on D; ð10Þ

i�kyðkxoy � kyoxÞuþ 2kxu ¼ 2kxg; on C0: ð11Þ
In the sequel, the Fourier variables related to x and y, respectively are n and g. The Fourier transform in x and y are denoted by
F xð�Þ and F yð�Þ, moreover F yðu; x; :Þ denotes the Fourier transform of uðx; :Þ.

Here and in the sequel,
p

denotes the principal determination of the square root (its real part is positive). Denote
R ðigÞ ¼ i
kxg
ky
� i

kx

�k2
y

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

�kyg
k2

x

þ 2im
�k2

y

k2
x

vuut
0
@

1
A:
Since m > 0, one can define R without ambiguity and one checks that ReðR ðigÞÞ < 0 for all g. Let S0ðRÞ be the space of tem-
pered distributions.

Proposition 2. Assume that g 2 S0ðRÞ, then there exists a unique distribution uðx; :Þ continuous from Rþ into S0yðRÞ, solution to
problem (10) and (11). It is given by
F yðu; x;gÞ ¼ 2F yðg;gÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �kyg

k2
x
þ 2im �k

2
y

k2
x

r eR ðigÞx: ð12Þ
It satisfies also
ðox � R ðigÞÞF yðu; x;gÞ ¼ 0:
Proof. The principle is to take the Fourier transform in y of the problem, and afterwards we shall consider Fourier transform
in x of the equation extended to the whole space.

Let u be a solution of problem (10,11) and v the extension of u by zero in the whole space: vðx; yÞ ¼ uðx; yÞ1xP0. By
introducing formally the function v in Eq. (10) we get
ik � $v þ �
2

D?v þ imv ¼ ikx �
�ky

2
ð2kxoy � kyoxÞ

� �
uð0; yÞ

� �
dx¼0 þ

�k2
y

2
uð0; yÞd0x¼0:
The term oxuð0; yÞ is defined by the entrance boundary condition (11), so we get
ik � $v þ �
2

D?v þ imv ¼ ikxgðyÞdx¼0 �
�ky

2
kxoyuð0; yÞdx¼0 � kyuð0; yÞd0x¼0

� �
:

Assuming that u 2 CðRþ;S0ðRÞÞ, we are allowed to take the Fourier transform of this expression. Let us define PðX;YÞ as the
polynomial which characterizes the differential operator of the equation, that is to say
Pðox; oyÞ ¼ iðkxox þ kyoyÞ þ
�
2

k2
yo

2
xx � 2kxkyo

2
xy þ k2

xo
2
yy

� 	
þ im:
Writing u0ðyÞ ¼ uð0; yÞ, the Fourier transform in y of the equation in v reads
Pðox; igÞF yðv; x;gÞ ¼
�k2

y

2
2ikx

�k2
y

F yðg;gÞ � i
kx

ky
gF yðu0;gÞ

 !
dx¼0 þ F yðu0;gÞd0x¼0

( )
:

Polynomial P may be factorized as
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Pðox; igÞ ¼
�k2

y

2
ðox � RþðigÞÞðox � R ðigÞÞ; ð13Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir
where we define R�ðigÞ ¼ i kx
ky

g� i kx

�k2
y

1� 1� 2 �kyg
k2

x
þ 2im �k

2
y

k2
x

� �
. Thus !
ðox � RþðigÞÞðox � R ðigÞÞF yðv ; x;gÞ ¼ 2ikx

�k2
y

F yðg; gÞ � i
kx

ky
gF yðu0;gÞ dx¼0 þ F yðu0; gÞd0x¼0: ð14Þ
We now show that there is a unique acceptable solution for this ordinary differential equation. Let us take its Fourier trans-
form in x:
ðin� RþðigÞÞðin� R ðigÞÞF xF yðv ; n;gÞ ¼ 2ikx

�k2
y

F yðg; gÞ � i
kx

ky
g� n

� �
F yðu0; gÞ:
Since Re in� R�ðigÞð Þ – 0, we can divide each side of this equation by 2
�k2

y
Pðin; igÞ:
F xF yðv ; n;gÞ ¼ aþðgÞ
in� RþðigÞ

þ a�ðgÞ
in� R ðigÞ ;
where a�ðgÞ ¼ �
R ðigÞ�ikx

ky
g

RþðigÞ�R ðigÞ F yðu0;gÞ � 2ikx

�k2
y

1
RþðigÞ�R ðigÞ F yðg;gÞ.

If h 2 C n R, one knows that
1
in� h

¼ F xð1xP0ehx; nÞ if ReðhÞ < 0
�F xð1x60ehx; nÞ if ReðhÞ > 0:




Here ReðRþÞ ¼ �ReðR Þ > 0. According to the previous remark, since vðx; :Þ ¼ 0 for x negative, one gets aþðgÞ ¼ 0 and
F yðu; x;gÞ ¼ a�ðgÞeR ðigÞx1xP0;
so we get F yðu0;gÞ ¼ � 2ikx

�k2
y

F yðg;gÞ
RþðigÞ�ikx

ky
g
. Equality (12) and the last assertion follow. h

Notice that we can easily calculate, with this formula, the value of the derivative k � ru. As soon as u is regular enough,
we can perform an asymptotic expansion in � and m, and find: k � ru ¼ Oð�þ mÞ.

From this result, one deduces the following stability result.

Corollary 1. If g 2 H�
1
2ðRÞ then the solution u to problem (10) and (11) is continuous from Rþ into L2

yðRÞ, and it satisfies, for some
constant C not depending on the coefficient m:
kukL1x ðRþ ;L2
y ðRÞÞ
6 Ckgk

H�
1
2ðRÞ

:

Since C does not depend on the absorption coefficient m, one can check that if uin is smooth enough, for x fixed, the func-
tion uðx; :Þ converges strongly to a function in L2

y when m! 0. Therefore, one may claim that there exists a bounded solution u
to problem (10) and (11), even if m ¼ 0.

Proof. Let us integrate with respect to g the square modulus of both sides of Eq. (12). Since jeR ðigÞxj ¼ eReðR ðigÞÞx
6 1 and
Z

jF yðg; gÞj2ð1þ jgj2Þ�
1
2dg ¼ kgk2

H�
1
2ðRÞ

;

it suffices to show that there exists a constant C1 > 0, not depending on m, such that
1þ jgj2 6 C1 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�ky

k2
x

gþ 2i�m
k2

y

k2
x

vuut
������

������
4

8g 2 R: ð15Þ
So, if we denote X ¼ 1� 2�ky

k2
x

g and N ¼ 2�m k2
y

k2
x
, one first sees that
1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ iN

p��� ���2 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ N2

q
þ 2ðX2 þ N2Þ

1
4cos

p
4
� ArgtanX=N

2

� �
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ X2

q

(indeed the cosine is nonnegative). With a ¼ k2
x

2�ky
, we have 1þ jgj2 ¼ 1þ a2ð1� XÞ2 and it is easy to check that

1þ a2ð1� XÞ2 6 C1ð1þ X2Þ for C1 ¼ 2a2 þ 1; Inequality (15) follows. h

Remark: with the same techniques, one can also find existence and uniqueness of a solution in other spaces, for instance,

if F yðg;gÞ
ð1þjgj2Þ1=8 2 L2

gðRÞ, we have u 2 L2ðDÞ.
Since jF yðg;gÞj 6 Cð1þ jgj2Þ1=2jF yðuin;gÞj, that means that if uin is smooth enough (in H3=4 for example), the solution u

belongs to L2ðDÞ.
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2.3. Remark on the problem on the quadrant

We now consider the same problem (10) and (11) but restricted to the quadrant fðx; yÞs:t:x P 0; y P 0g. To find a
good absorbing boundary condition on the boundary fy ¼ 0g, we formally factorize the differential operator of Eq.
(10) as follows:
Pðox; oyÞ ¼ �
k2

x

2
ðoy � AþðoxÞÞðoy � A�ðoxÞÞ; ð16Þ
where Aþð:Þ and A�ð:Þ are the roots of P considered as polynomials in oy:
A�ðoxÞ ¼
ky

kx
ox � i

ky

�k2
x

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2i�kx

k2
y

ox þ 2i�m
k2

x

k2
y

vuut
0
@

1
A ¼ ky

kx
ox � i

ky

�k2
x

	 1

�k2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2

y � 2i�kxox � 2i�mk2
x

q
:

The definition of the fractional derivative is classical and is based on Fourier transform. The quadrant problem that we con-
sider consists of Eqs. (10) and (11) supplemented with the following boundary condition
oyu� AþðoxÞðuÞ ¼ 0; 8x > 0; for y ¼ 0: ð17Þ
Then, we have the following result, which is detailed in [9,5] (for related boundary value problems for classical Schrödinger
equations, see for example [12]).

Proposition 3. Assume g 2 H�
1
2ðRþÞ and its support is in ð0;þ1Þ. Let u be the solution of the half-space problem (10) and (11).

There is a unique solution U continuous from Rþ into L2
yðRþÞ of problem (10), (11), and (17) and it satisfies

(i) if ky > 0, then U ¼ u1yP0,
(ii) if ky < 0 and if the incoming data is given by gðyÞ ¼ hðy� aÞ with a > 0, then:
lim
a!þ1

kU � u1yP0kL1ðRþ ;L2
y ðRþÞÞ

¼ 0:
3. Numerical scheme

Let us consider the domain
D ¼ fðx; yÞ : 0 6 x 6 Lx; y0 6 y 6 y0 þ Lyg:
On this domain, we address the numerical solution of the following equation:
iðkxox þ kyoyÞuþ
�
2

D?uþ imu� lu ¼ 0; ð18Þ
where m ¼ mðxÞ and l ¼ lðxÞ; it is supplemented by the same boundary condition as before on fx ¼ 0g:
i�kyðkxoy � kyoxÞuþ 2kxu ¼ 2kxg;
where g is given by Eq. (9). It is the same problem as in Section 2, except that the coefficients m and l may be functions of x. In
the sequel, we consider alternatively the case where l is a function of juj; as a matter of fact, we can take
l ¼ f ðjujÞ; where f ðwÞ ¼ e�aw2 � 1;
with a a positive constant (for a justification of this model, see for example [19,18]).
The interesting problems involve a very small coefficient m, and it may be necessary to have a sufficiently small so that

there is no blow-up of the solution.

3.1. Description of the scheme

Let us set
m ¼ m0 þ m1 with m0 ¼ inf m;
so m0 is a constant and m1 a function of x. One discretizes the problem according to a regular grid, we denote by dx; dy the
space step in the two directions and by n and j the indices corresponding, respectively to x and y; then un

j 
 uðndx; jdyÞ.
The numerical method is based on a space marching technique according to the x variable and a splitting with respect to

this variable. According to Proposition 2, when the value of un is known, it would be possible to evaluate a first intermediate
value uinter by solving on ½xn; xn þ dx� the following equation:
ðkxox þ kyoyÞu� i
�
2

D?uþ m0u ¼ 0:
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it would be given by FðuinterÞ ¼ FðunÞeR ðigÞdx (here we denote F ¼ F y).
As a matter of fact, in order to have an accurate treatment of the advection term, we prefer to perform the following sim-

ple splitting: at each space step ½xn; xn þ dx�, one solves successively
kxoxu� i
�
2

D?uþ m0u ¼ 0;

kxoxuþ kyoyuþ ðm1 þ ilÞu ¼ 0:
3.1.1. Initialization
For the initial condition, recall that
g ¼ i�
ky

2kx
ðkxoy � kyoxÞuin þ uin;
where the input data uin ¼ uin
jx¼0 is a smooth function of the transverse variable Y ¼ k? � x ¼ kxy� kyx which values zero

around the corner points y ¼ y0 and y ¼ y0 þ Ly, so one can take its Fourier transform. To determine the boundary value
u0 of u, we use Formula (12)
Fðu0Þ ¼ 2FðgÞ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �kyg

k2
x
þ 2imin �k

2
y

k2
x

r : ð19Þ
That is to say ðu0
j Þj is obtained by taking the FFT (Fast Fourier Transform) of g, dividing this function of g by the function

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �kyg

k2
x
þ 2imin �k

2
y

k2
x

r
and then taking the Inverse Fast Fourier Transform (IFFT) of the result.

Generally, the input data uin is a sum of Gaussian functions whose half-height width is in the order of a characteristic
length Ls which is the typical value of the speckle width (a speckle is a hot spot inside the laser beam) and Ls is generally
larger than 20 times e. Then one checks that for values of �=Ls less than 0.1, the term i�kyðkxoy � kyoxÞuin that appears in
the previous formula for g is a corrective term and it is possible to take simply g equal to uin.

3.1.2. First stage: Fourier transform
The first stage is to solve
kxoxu� i
�
2

D?uþ m0u ¼ 0; ð20Þ
and we proceed from un to un#. Practically, from Proposition 2, we get immediately:
Fðun#Þ ¼ FðunÞeðR�ðigÞþigky
kx
Þdx:
In fact, we have
R�ðigÞ þ ig
ky

kx
¼ � 2m0

kx 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �kyg

k2
x
þ 2im0

�k2
y

k2
x

r� �� 2ig�ðg� im0kyÞ

k3
x 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2 �kyg

k2
x
þ 2im0

�k2
y

k2
x

r� �2 : ð21Þ
Notice that this formula may be used even if m0 is equal to zero, provided that the square root of the complex quantity is well
defined.

So, after a FFT on ðunÞ, we multiply it by eðR�ðigÞþigky
kx
Þdx and then apply an inverse FFT. We denote ðun#

j Þ the value of the inter-
mediate function, in the cell ðn; jÞ.

3.1.3. Second stage: finite difference scheme
3.1.3.1. Boundary conditions on the edges fy ¼ 0g and fy ¼ Lg. It is well known that for this kind of propagation model, the
boundary treatment is sensitive; see for example [2] for the case of wave equations. In our case the problem is somehow
different since there is a privileged direction of propagation: as we use a FFT technique, the key point at each stage of the
space marching scheme is to force the values of the numerical solution to be negligible on both edges. Therefore we use
a damping method which is well known by physicists who address this kind of problem [15]. The principle is to introduce
in a strip near each edge an artificial absorbing coefficient denoted by B; it decreases progressively on the first five cells near
the edge and is very large on the edge. More precisely, if mn

1;j denotes the value of m1 in cell ðn; jÞ, one replaces mn
1;j by mn

1;j þ Bj

where the artificial coefficient Bj is defined by
Bj ¼ bb5�j if j 6 5 ¼ bb5�Jmaxþj if Jmax � j 6 5 ¼ 0 elsewhere; ð22Þ
with b typically in the order of 10 to 100. The numerical tests below (with a characteristic value of b in the order of 0.1 to 1)
show that this technique leads to get a vanishing value of the solution on the edges. One checks on Table 3 that the value of
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the solution (outside the artificial absorbing layers) is almost independent from the chosen values of b and b. Indeed, near the
boundary, the main step is the advection one and it is crucial to have a numerical solution which is negligible near the
boundary cell, in order to avoid a spurious ray to appear on the opposite boundary, due to the FFT. Notice that, according
to the advection scheme by space marching, the modification in the artificial layer at position xn has no significant impact
on the value outside the artificial layer at position xnþ1.

3.1.3.2. First order scheme. In this stage, we solve on ½xn; xn þ dx� the following equation:
kxoxuþ kyoyuþ m1ðxnÞuþ ilu ¼ 0: ð23Þ
To do this, we use standard finite difference methods. Assume that ky > 0 (the case ky < 0 is similar). We consider an upwind
method, given that the CFL stability criteria h 6 1 must be checked, where
h ¼ ky

kx

dx
dy
:

The initial value is now un#
j and we get the final value unþ1

j by setting
kx

dx
unþ1

j � un#
j

� 	
þ ky

dy
un#

j � un#
j�1

� 	
þ mn

1;j þ iln
j

� 	 un#
hj þ unþ1

j

2

 !
þ Bjunþ1

j ¼ 0; ð24Þ
where un#
hj ¼ hun#

j�1 þ ð1� hÞun#
j . It is the value of the function on the characteristic line passing by ðxnþ1; yjÞ; for the first cell,

we set un#
�1 ¼ 0.

For the nonlinear model where the term l is replaced by f ðjujÞ, the coefficient ln
j has to be replaced by f ðjun#

hj jÞ.

3.1.3.3. Second order scheme. When h ¼ 1, the previous scheme gives very accurate results, but in real cases it is not possible
to impose this condition, one has h < 1 and results are much worse (see Table 2). We improve the numerical scheme when
h < 1 by using a second order scheme as in all advection problems. To do this, we choose a flux limiter method (see [17]),
with the Van Leer function as limiter (tests prove it to be the best one: see Fig. 5 and Section 3.3.1). That is to say, we intro-
duce the function / which depends on the ratio k of the gradient of the function u# in two neighboring cells
/ðkÞ ¼ jkj þ k
1þ jkj : ð25Þ
We have to solve simultaneously two scalar equations (one for the real and one for the imaginary part) with the same flux
limiter, so we have to choose one single significant quantity to estimate the flux limitor: we choose the energy of the laser,
i.e. juj2, and evaluate / in terms of jujj2 and not of jujj:
kj ¼
ju#

j j
2 � ju#

j�1j
2

ju#
jþ1j

2 � ju#
j j

2 :
We now replace, in the first order scheme, the term derivative in y;u#
j � u#

j�1, by Fj � Fj�1 where the flux Fj is defined as
Fj ¼ u#
j þ

1
2
ð1� hÞ u#

jþ1 � u#
j

� 	
/ðkjÞ:
The second order scheme is now
kx

dx
unþ1

j � un#
j

� 	
þ ky

dy
Fn

j � Fn
j�1

� 	
þ mn

1;j þ iln
j

� 	 un#
hj þ unþ1

j

2

 !
þ Bju

nþ1
j ¼ 0: ð26Þ
3.1.4. Numerical method for two-ray model
One may also consider a more complex model with two-rays crossing each other, with two different propagation vectors

k1 and k2 (one with positive and one with negative y-component: k1
y > 0 and k2

y < 0.) To do so, it is necessary to evaluate the
nonlinear term f ðjujÞ. Theoretically, the laser energy is
jWj2 ¼ ju1eik
1 �x
� þ u2eik

2 �x
� j ¼ ju1j2 þ ju2j2 þ 2Re u1u2�eiðk

1�k2Þ
� �x

� �
:

But we are in the framework of W.K.B. approximation and we do not model the fluctuation of the solution at the wavelength
level. Hence, the term f has to be taken on a function w corresponding to the variation of the index of refraction, which is here
the average value of juj over a wavelength
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju1j2 þ ju2j2

q
:

One considers the following model, for p ¼ 1;2:
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ikp � rup þ �
2

Dp
? þ imup ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju1j2 þ ju2j2

q� �
up:
The first stage of the previous scheme is the same as before: for each ray, we consider Eq. (20) with its own prop-
agation direction k1 or k2. The interaction between the two-rays changes only the nonlinear term of the second
stage.

3.2. Properties of the scheme

3.2.1. Stability
Let us denote kvnk2

l2 ¼
P

jjvn
j j

2dy.

Proposition 4. The numerical first order scheme is monotone decreasing for the l2-norm, i.e. the following inequality stands
8n 2 N; kunkl2 6 ku
nþ1kl2 : ð27Þ
Moreover, the previous inequality is strict if m – 0.

Proof

1. First stage: Fast Fourier Transform
Let us denote by f the discrete variable associated to g. On the one hand, since
un# ¼ IFFT eðR ðifÞþif
ky
kx
ÞdxFFTðunÞ

� �

and since the FFT conserves the l2-norm, we have

kun#kl2 ¼ ke
ðR ðifÞþif

ky
kx
ÞdxFFTðunÞkl2 :

On the second hand, the inequality ReðR ðifÞÞ 6 0 implies that

eðR ðifÞþif
ky
kx
Þdx

����
���� 6 1;

with an equality iff m0 ¼ 0. We deduce that

eðR ðifÞþif
ky
kx
ÞdxUðfÞ

����
����

l2
6 kUðfÞkl2 ;

and conclude

kun#kl2 6 ku
nkl2 ;

with kun#kl2 ¼ kunkl2 iff m0 ¼ 0.
2. Second stage: upwind scheme

For the first order scheme, Relation (24) gives us that:
unþ1
j ¼

kx
dx

un#
j �

ky

dy
ðun#

j � un#
j�1Þ � 1

2 ðmn
1;j þ iln

j Þu
n#
hj

kx
dx
þ 1

2 ðmn
1;j þ iln

j Þ þ Bj

Provided that kx
dx

un#
j �

ky

dy
ðun#

j � un#
j�1Þ ¼

kx
dx

un#
hj

, we obtain:

unþ1
j ¼

kx
dx
� 1

2 ðmn
1;j þ iln

j Þ
kx
dx
þ 1

2 ðmn
1;j þ iln

j Þ þ Bj
un#

hj
: ð28Þ

Since the modulus of the multiplicative coefficient in the right-hand side is smaller than one, this leads to
kunþ1kl2 6 kðu

n#
hj
Þjkl2 . By the triangle inequality:

kðun#
hj
Þjkl2 6 hkðun#

j�1Þjkl2 þ ð1� hÞkðun#
j Þjkl2 6 ku

n#kl2 ;

which concludes the proof. h

In the linear case, that is the case where l is a data and not a function of juj, the scheme is obviously consistent, so Prop-
osition 4 implies the convergence of the scheme.

Concerning the second order scheme modifying the advection step, it is well known (cf. [17]) that the effect of this
technique with a flux limiter is to allow small CFL-numbers with a better accuracy (than the first order scheme) without
generating spurious oscillations. These assertions will be confirmed by numerical tests we have performed (see Section
3.3.1).
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3.2.2. Comparison with the classical Schrödinger equation
If ky ! 0, Eq. (18) reduces to the classical Schrödinger equation, in the case l ¼ f ðjujÞ:
ioxuþ �
2

o2
yyuþ imu� f ðjujÞu ¼ 0; ð29Þ
with a very simple boundary condition (notice that g ! uin)
ujx¼0 ¼ uin: ð30Þ
Proposition 5. If ky ! 0, the solution given by the numerical scheme converges to the solution of the classical Schrödinger
problem (29) and (30).

Proof

* Initializing. Formula (19) used in the scheme shows that
lim
ky!0
Fðu; x ¼ 0Þ ¼ FðgÞ;
so the boundary condition tends to ujx¼0 ¼ g, which is Eq. (30).
* First stage. If ky tends to zero, i.e. when the ray tends to be perpendicular to the boundary, Formula (21) shows that
lim
ky!0

R ðigÞ þ ig
ky

kx
¼ �m� i

�
2
g2;
so un# given by the first stage is the solution of the classical Schrödinger equation without potential
ioxuþ �
2

o2
yyuþ imu ¼ 0;
which is the limit of the advection-Schrödinger equation.
* Second stage. It corresponds to a classical discretization of the ordinary differential equation:
oxuþ m1uþ if ðjujÞu ¼ 0:
In other words, the scheme is a classical splitting between dispersion and refraction in the Schrödinger Eq. (29). h
3.3. Numerical results

Let us recall that the laser energy density is equal to juj2. Moreover, the physical meaning of the absorption coefficient m is
the following: with a constant value of m, if there would be no diffraction operator, the laser intensity (integrated on a line
orthogonal to the propagation direction) would decrease by a factor 1=e2 on a propagation distance equal to 1=m.

We now give the standard numerical values used for the numerical tests.

1. For the incoming boundary condition on the edge x ¼ 0, we take a Gaussian of amplitude 1 centered at a point ð0; y0Þ i.e.
uin ¼ exp �ðkxðy� y0Þ � kyxÞ2=L2

s

� 	
with Ls ¼ 2:5 lm; which corresponds to the typical half-width of a speckle of a laser

beam.
2. For the incidence angle, we take �45�, then k ¼ �

ffiffi
2
p

2 ;
ffiffi
2
p

2

� 	
.

3. � ¼ 0:05 lm, the wavelength of the laser is 2p� 
 0:31 lm.
4. m0 ¼ m1 ¼ 5 � 10�4 lm�1. Notice that the larger the absorption coefficient, the easier the numerical simulation (indeed the

laser energy decreases faster with respect to the propagation distance).
5. We take a ¼ 5 � 10�2. It depends on the electronic density of the plasma: in the vacuum a would be null. This size order

corresponds either to a dense plasma or to a high laser intensity – since we have taken a normalized value of the intensity
corresponding to a maximum value of uin equal to 1.

6. For the definition of the boundary layer B, given by (22), we take b ¼ 0:1 and b ¼ 50.

All our figures represent the laser energy juj2.
To be easier to read, our examples are variations with respect to the case defined by the previous numerical values of the

coefficients and computed with a CFL number h equal to 1 (see Fig. 1). With these assumptions, the scheme converges very
well as the discretization step decreases (see Table 1). Due to the a coefficient, focusing occurs: the beam focuses and reaches
a maximum, then decreases. Notice that it may even focus several times for larger values of a. All our comparisons are made
with this reference case, denoted uref , in the fully converged situation (with mesh size dx ¼ 0:05, corresponding to 211 points
on a domain length Lx ¼ 100.)
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3.3.1. Convergence of the scheme
Convergence of the first order scheme
We first take the CFL number equal to 1, which is the case where the first and the second order schemes are equivalent. To

verify the convergence of the scheme, we have three possible indicators.
A first indicator is the total energy in the physical domain of interest (that is to say, outside the artificial absorbing layer)

which is equal to the l1-norm of the energy: we denote it by
Table 1
Converg

Numbe

Mesh s
Error on
Focusin
Error on
Maxim
Error on
juj2 ¼ Rn;jjun
j j

2dxdy:
So we compare this quantity to the corresponding one of the fully converged case juref j2; in the two first tables, we give the
values of the relative error Rn;jjjun

j j
2 � juref ;n

j j2jdxdy=juref j2 for different cases. Now, if we want to compare for instance the ef-
fects of the variation of the incidence angle, two other indicators are more relevant in the framework of the nonlinear model.
One is given by the focusing distance: we can look for the focusing maximal point Lfoc and we measure the distance from Lfoc

to the origin of the ray. A last indicator is the maximal value of the energy. These last two indicators are quite sensitive. For
the nonlinear model, the numerical results are illustrated by Fig. 2 for the reference case; the estimates of the indicators are
close to the ones of the reference case when the spatial step decreases (see Table 1).

Thus, we may conclude that when CFL ¼ 1, we reach an accurate result even for dx ¼ dy ¼ 0:4, and that the focusing phe-
nomenon is very well captured.

If CFL number decreases, the accuracy becomes bad and even the focusing disappears: see Table 2 and Figs. 3 and 4 (Of
course, if the CFL number is strictly larger than 1, the computed solution blows up).

Convergence of the second order scheme
We tested three different functions for the flux limiter: the first one is the Van Leer flux function defined by (25), the sec-

ond one is a convex combination of Lax-Wendroff and Beam-Warning flux limiter functions, defined by
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Fig. 1. Reference case: dx ¼ dy ¼ 0:05;CFL ¼ 1. Then Lfoc ¼ 59:7;Maxðjuj2Þ ¼ 2:14.

ence of the scheme, with CFL ¼ 1. The last column represents the fully converged reference case uref .

r of points 26 27 28 29 210 211

ize dx ¼ dy 1.6 0.8 0.4 0.2 0.1 0.05
energy Rj;njjun

j j
2 � juref ;n

j j2jdxdy=juref j2 46 % 32% 15% 6% 2% –
g distance Lfoc 82.7 61.4 59.5 59.4 59.9 59.7

focusing distance 38% 2.9% 0.4% 0.6% 0.3% –
um of energy Maxn;jðjun

j j
2Þ 1.74 2.16 2.13 2.13 2.14 2.14

the maximum of energy 19% 0.7% 0.4% 0.4% 0.07% –
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Fig. 2. 1st order scheme convergence with CFL ¼ 1 as a function of cell size dx (see Table 1).

Table 2
Convergence of the first order scheme with cell size dy ¼ 0:1 and various CFL. The last column represents the fully converged reference case already seen uref

(with dy ¼ 0:05). We see that the focusing phenomenon is very poorly captured (huge error on the maximum of energy as soon as CFL < 1).

CFL 0.5 0.6 0.75 0.875 1 1
Error on energy Rj;njjun

j j
2 � juref ;n

j j2jdxdy=juref j2 (%) 19 17 14 9 2 –
Focusing distance 43.1 49.1 55.6 48.0 59.9 59.7
Error on focusing distance (%) 28 18 7 19 0.3 –
Maximum of energy 1.08 1.18 1.42 1.72 2.14 2.14
Error on the maximum of energy (%) 50 45 34 20 0.07 –

x

y

0 10 20 30 40 50 60 70 80 90 100

−80

−60

−40

−20

0

20

40

60

Fig. 3. First order scheme with CFL ¼ 0:6; dx ¼ 0:1; dy ¼ 0:17. No focusing observed: the convergence of the scheme is poor.
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Fig. 4. First order scheme: error on the maximum of energy, as a function of CFL (see Table 2).
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/ðkÞ ¼
0 if k 6 0
k if 0 6 k 6 1
1 if 1 6 k;

8><
>: ð31Þ
the third one is the Superbee function defined by
/ðkÞ ¼

0 if k 6 0
2k if 0 6 k 6 1

2

1 if 1
2 6 k 6 1

k if 1 6 k 6 2
2 if 2 6 k:

8>>>>>><
>>>>>>:

ð32Þ
We always apply these flux limiter functions at k ¼ juj2 and not at the real or imaginary part of the solution. As clearly shows
Fig. 5, it appears that the Van Leer flux function is the one which gives the most accurate results. It is particularly clear in
terms of the error on the maximum of energy: even for small CFL, its estimate is quite accurate contrarily to the first order
scheme (for CFL ¼ 0:5, the error is only about 3% with second order scheme but about 50% with first order one).

The smaller the CFL is, the more points are needed to get a correct approximation, as illustrates a comparison between
Figs. 7 and 8. It is however performed even with 29 points (that is, with dx ¼ 0:2) for CFL ¼ 0:6 for instance, contrarily to
the scheme of order one, where no focusing at all is observed if CFL ¼ 0:6 even for dx ¼ 0:1 for instance (see Fig. 3).

Influence of the artificial boundary layer
In the definition of the artificial absorbing layer B given by (22), we make b and b vary, with fixed cell sizes dx ¼ dy ¼ 0:2

and all the other parameters given by the reference case. We look at the value of the total energy for each value of b; b (the
reference values being b ¼ 0:1; b ¼ 50.) The results are given in Table 3. We check that the sensitivity to the exact values of
these coefficients is very weak; but it is crucial to have b–0, elseif spurious reflexions may appear on the boundaries.

3.3.2. Variation of several parameters

� Variation of the absorption coefficient
The numerical scheme can also be used with no absorption (m ¼ 0), it still works and give good results. The repartition of
m0 and m1 changes very little the solution, as shows Table 4. In each case, the reference is taken for m0 ¼ m1 ¼ m

2. The table
shows the results only for the comparison on the total energy; indeed, the focusing distance remains completely
unchanged in any case, and the maximum of energy changes by less than 0.3% in the worst case.
When the absorption coefficient is larger, the problem is easier to solve since the laser energy decreases when x increases:
for instance in the reference case, if we set m ¼ 10�2 instead of m ¼ 10�3, the ray is rapidly totally absorbed, and no focusing
is observed.
The influence of the repartition between m0 and m1 increases with a, as shows Table 4.
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Fig. 5. Error on the maximum of energy as a function of CFL, for dy ¼ 0:1, for 3 different flux limiters.
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874 M. Doumic et al. / Journal of Computational Physics 228 (2009) 861–880
� Variation of the incidence angle
To test whether the scheme is accurate for various angles, we make it vary from 5� to 70�, all the other parameters being
constant: see Table 5. We check that the indicators for the focusing distance and the maximum of energy are well esti-
mated, since they depend very few on the incidence angle.

� Variation of �
If all other coefficients are fixed, the larger � becomes, the more important the diffusion phenomenon is (and the larger the
domain must be to obtain a converging solution), and, in the nonlinear case, the smaller the focusing distance becomes. A
limit value of � is experienced, above which no focusing phenomenon (for the nonlinear equation) is observed. In our ref-
erence case for instance, the limit is around � ¼ 0:17, see Fig. 6, but this limit depends of course on all parameters, espe-
cially a and m.
From a physical point of view, all our asymptotic analysis is built on the assumption � ¼ oð1Þ: else, our equation is no more
a valid approximation of the envelope of Helmholtz equation, given by (1). Hence, we have to assume �� 1: larger values
are meaningless.
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Fig. 7. CFL ¼ 0:8, second order scheme with Van Leer flux limiter: error on the focusing phenomenon as a function of the cell size dx.
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Fig. 8. CFL ¼ 0:6, second order scheme with Van Leer flux limiter: error on the focusing phenomenon as a function of the cell size dx.

Table 3
Incidence of the variation of the boundary layer B on the difference between the total energy of each case and the one of the reference case (b ¼ 0:1 and g ¼ 50):
Rj;n jjun

j j
2 � juref ;n

j j2jdxdy=juref j2. The results of this table show that the influence is negligible, as soon as b is not zero.

b ¼ 10 (%) b ¼ 30 (%) b ¼ 50 (%) b ¼ 100 (%)

b = 0 29 29 29 29
b = 0.1 0.08 0.02 0 0.02
b = 0.2 0.03 0.03 0.05 0.07
b = 0.5 0.08 0.14 0.15 0.16
b = 1 0.19 0.22 0.23 0.23
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Table 4
Influence of the repartition between m0 and m1 in different cases: percentage of error on total energy, defined by Rj;njjun

j j
2 � juref ;n

j j2jdxdy=juref j2.

m0
m ¼ 0 (%) m0

m ¼ 0:1 (%) m0
m ¼ 0:3 (%) m0

m ¼ 0:5 m0
m ¼ 0:7 (%) m0

m ¼ 0:9 (%) m0
m ¼ 1 (%)

Reference case
m ¼ 10�3;a ¼ 0:05 0.3 0.2 0.1 – 0.1 0.2 0.3
m ¼ 10�3;a ¼ 0:5 6.2 5.0 2.5 – 2.5 5.0 6.2
m ¼ 10�2;a ¼ 0:05 0.5 0.4 0.2 – 0.2 0.4 0.5
m ¼ 10�2;a ¼ 0:5 8.9 7.2 3.6 – 3.7 7.4 9.3

Table 5
Variation of the incidence angle: influence on the focusing distance and on the maximum of energy. As usual, the errors refer to the fully-converged reference
case.

Incidence angle 5� 30� 45� 60� 70�

dx 0.23 0.16 0.2 0.16 0.02
dy 0.02 0.1 0.2 0.27 0.06
Maximum of energy 2.17 2.16 2.13 2.10 1.99
Error on the maximum of energy (%) 1.5 0.8 0.43 2.2 9.7
Focusing distance (%) 59.2 59.7 59.35 59.9 60.2
Error on the focusing distance 0.9 0.01 0.6 0.34 0.96
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� Variation of a
The parameter a represents a nonlinear effect, and induces autofocusing and filamentation of the beam. The larger it is, the
more accurate the focusing phenomenon becomes, as illustrated in Fig. 9.
It could be interesting to evaluate the value of a for which a focusing phenomenon appears: in our reference case, it is for
a P 0:02. On the other hand, one may check that if a is large enough, several focusing points appear and a breaking of the
beam occurs (see Fig. 11). This phenomenon depends of course also on the absorption coefficient m and on the diffusion
coefficient �.

3.3.3. Remark on artificial damping
We wish to check now that there is no artificial damping due to the numerical scheme; in other words, that in the second

stage the decrease of the l2-norm of the solution has the right value. Using the notations of Section 3.2, this right value is
given by the equality:
Fig. 9.
effect, i
kunþ1kl2 ¼ e�2m1dxkxkun#kl2 :
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

2

3

4

5

6

7

α

M
ax

im
al

 e
ne

rg
y

Influence of a on the maximum of energy (obtained in the focusing phenomenon). Standard hypothesis. The autofocusing, which is a nonlinear
s more significant when a increases.
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Fig. 11. a ¼ 1:5; m ¼ 0: high focusing. One observes a breaking of the beam in three sub-beams.
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Going back to Eq. (28), we can write it under the form (assuming no artificial boundary layer: Bj ¼ 0)
unþ1
j ¼ 1� a� ib

1þ aþ ib
un#

hj
;

where we set a ¼ dx
2kx

mn
1;j and b ¼ dx

2kx
lj. Since the characteristic value of the coefficient a is 10�4 (or smaller) and, in the worst

case, the characteristic value of l is in the order of 1, so that we can choose dx
2kx

to have b small, we see that
1� a� ib
1þ aþ ib

����
����

2

¼ 1� 4a
1

1þ b2 þ oða2Þ;
which is very close to the right value e�4a ¼ 1� 4aþ oða2Þ. The only damping may then come from the fact that
P

jju
n#
hj
j2 may

be significantly smaller than
P

jju
n#
j j

2, due to a large difference between un#
j and un#

j�1. To check this numerically, we test the
case m ¼ 0: Fig. 10 shows that even in a difficult case with a large a ¼ 1:5, the global energy kunk2

l2 is conserved.
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Fig. 12. Two beams crossing with incidence angles �30�;a ¼ 0:05, and L ¼ 5 for the initial Gaussian functions.
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3.3.4. Two-ray model
We have also performed computations for the two-ray model which is described above at Section 3.1.4 using two func-

tions u1 and u2; an illustration is given by Fig. 12. The interaction between the rays is only given by the nonlinear term f ðwÞ
with w2 ¼ ju1j2 þ ju2j2 as above. To analyse its exact influence, one can compare the result given by the previous model with
the two-ray interaction and the result given by a simple superposition of two independent rays (obtained with the one-ray
model). One may see then that the energy becomes larger with the two-ray interaction: on the case of Fig. 12 for instance,
Maxðju1j2 þ ju2j2Þ ¼ 12:3 instead of 10.6 if the rays do not interact.

4. Extension to a time-dependent interaction model

We now address a model where a tilted paraxial equation is coupled with a hydrodynamic model in order to study fil-
amentation. Under the hypothesis of a small incidence angle, this model has been extensively used by physicists for a long
time and it is also addressed in [4,3,10] for example and the references therein (for a derivation of this model, see [18] for
example).

4.1. The model and the numerical method

Modeling of the plasma.
By taking the critical density (depending only on the laser wave length) as a reference density, one defines a non-dimen-

sion electron density N ¼ Nðt;xÞ; so the plasma may be characterized only by this quantity, the plasma velocity U ¼ Uðt;xÞ
and the electron density Teðt;xÞ.

Then, the simplest model is the following one. The pressure P ¼ PðN; TeÞ is assumed to be a smooth function of the density
N and of the electron temperature Te (which is assumed to be a very smooth fixed function of the position x), for example
PðN; TeÞ may be the sum of two terms equal to N3 and NTe up to multiplicative constants. Then one considers the following
barotropic Euler system:
o

ot
N þrðNUÞ ¼ 0; ð33Þ

o

ot
ðNUÞ þ rðNUUÞ þ rðPðN; TeÞÞ ¼ �NcprjWj2: ð34Þ
The term cprjWj2 corresponds to a ponderomotive force due to a laser pressure (the coefficient cp is a constant depending
only on the ion species).

Modeling of the laser beam.
The laser field W ¼ Wðt;xÞ is a solution to the following frequency wave equation (which is of Schrödinger type):
2i
1
c

o

ot
Wþ 1

k0
DWþ k0ð1� NÞWþ im}W ¼ 0; ð35Þ
where the real coefficient m} is related to the absorption of the laser intensity by the plasma and c the light speed.
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Assume that the mean value of the plasma density is quite constant and denoted Nm, so we set
NðxÞ ¼ Nm þ dNðxÞ;
where dN is small with respect to 1. Then one can make the paraxial approximation; that is to say the laser beam is now
characterized by the space and time envelope of the electric field U ¼ Uðt;xÞ and we set
Wðt;xÞ ¼ Uðt; xÞeik0K:x; where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm

p
k:
Therefore, if one sets � ¼ 1
k0

ffiffiffiffiffiffiffiffiffi
1�Nm

p , by the same procedure as mentioned in the introduction, one checks that U satisfies:� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm

p
ik � rU þ �

2
Dk
?U þ i

m}

2
U � k0dN

2
U þ i

1
c

oU
ot
¼ 0: ð36Þ
It is necessary to supplement Eq. (36) with the same boundary condition as in the model of Section 1 (and with an initial
condition).

Numerical method.
We consider a mesh of finite difference type as above. The numerical treatment of the barotropic Euler system (33) and

(34) is a classical one, we have chosen a Lagrange–Euler method, see [3] for details. To deal with (36), according to the large
value of the speed of light, one must perform a time implicit discretization. So at each time step, one solves firstly the Euler
system with a ponderomotive force evaluated with the previous value of jUj2. Secondly, using the obtained values of N and of
dN, one has to solve (36); if uini and u denote the values of the field U at the beginning and the end of time step, one searches u
solution to
ik � ruþ imuþ �
2

Dk
?u

� 	
� lu ¼ i

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm
p uini

dt
; ð37Þ
where we have set
l ¼ k0dN
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm
p ; m ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm
p 1

dt
þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Nm
p m}:
That is exactly the equation studied in Section 3, but a right hand side term has been added. So the numerical method is the
same as described above; the only modification is the adding of the right hand side term in the transport stage. Notice that
the index of refraction ð1� NÞ is equal to ð1� 2�lÞð1� NmÞ.

From a practical point of view, the numerical method for (36) has been implemented in a parallel way in the HERA plate-
form for plasma hydrodynamics in 2D and in 3D; the parallel solver and the domain decomposition techniques are the same
as the ones detailed in [3].

4.2. Numerical results

Recall that from a practical point of view, in the transverse profile of a laser beam, one distinguishes a lot of small hot
spots, called speckles, whose intensity is very large compared to the mean intensity of the beam. The shape of each individual
speckle is a Gaussian function whose width is about a few micrometers. We present here the results of a 2D numerical sim-
ulation. One addresses a simulation box which is 600 lm long and 300 lm wide, the laser propagates with an incidence an-
gle of 19�. The incoming boundary condition a ¼ aðyÞ is independent of time and mimics a laser beam whose width is equal
to 40 lm with five speckles; each speckle is modeled by a centered Gaussian function h and is characterized by a random
phase fk, that is to say aðyÞ ¼ R5

k¼1akhðy� ykÞeifk , where the ak are random and the ak are close to each other. The plasma
has an initial density equal to Nm ¼ 0:15 and the temperature is equal to 35 � 106 Kelvin. The mesh consists of 4 millions
of cells and the time step is in the order of 0.1 picosecond (it is determined at each time step by the Courant–Friedrichs–Levy
condition related to the sound speed of the plasma). The initial value of the laser intensity is zero, the plasma is progressively
grabed by the ponderomotive force and in Fig. 13, we have plotted the laser intensity at different times. At the first snapshot
(at time 2.6 ps), the plasma is not grabed enough, so the value of l is small; the autofocusing effect is very low but not neg-
ligible: instead of five different speckles at the incoming boundary one notices only four speckels at the rear side (one of the
four has a larger intensity) and a little spreading of the beam may be observed. At the second snapshot, the position of the
four speckles has changed and the plasma is more grabed – since the energy density is larger in one speckle. On the two last
snapshots, we may check that the spreading of the beam at the rear side of the simulation box becomes larger when the time
increases. Moreover the configuration is not stationary, this situation is characteristic of the so-called filamentation
instability.

5. Conclusion

A mathematical analysis has lead to an analytical form of the solution of the tilted paraxial equation in the simple
case where the refraction index and the absorption coefficients are constant. Afterwards, we proposed a numerical
method for solving the initial problem which uses the previous analytical form. The scheme has the property to yield



Fig. 13. Snapshot of the laser intensity at the time 2.6 ps, 3.9 ps, 5.3 ps and 6.6 ps (from the top-left to the bottom-right).
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a classical scheme when incidence angle becomes zero and the equation reduces to the classical paraxial one. The
numerical method is illustrated by some results on toy problems. We have also given extensions of this model, which
have enlarged the capability of our plateform HERA for laser propagation in a plasma (see [3,14] for examples of sim-
ulations performed with HERA). This numerical method may be also extended in the case where the unit vector K
depends slowly on the one-dimension spatial variable x � n, for instance if one has to deal with an equation of the
following type
iK � ruþ i
1
2
ðr � KÞuþ 1

2k0
Dk
?u� luþ imu ¼ 0; on D:
The paraxial equation in a tilted frame may be also considered in a first region where the plasma density is slowly varying
with respect to the spatial variable and coupled with another model in a neighbor region where the plasma density is
strongly varying: in that region the laser is no more characterized by the time-space envelope of the fast oscillating electric
field but by the wave Eq. (35) (see [6], for results obtained in HERA with this model). For simulating such a physical tilted
beam, a classical paraxial model without accounting for the incidence angle would lead to search a the solution which would
be highly oscillating with respect to the space variable and therefore to increase dramatically the mesh size to get accurate
results.
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